Einführung in die Logik – 5

Der Kalkül des Natürlichen Schließens für die Prädikatenlogik 1. Stufe

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

KNS für PL-1

Einführungsregeln	Beseitungsregeln

KNS für PL-1

Einführungsregeln	Beseitungsregeln
∀E	∀В
3E	∃В

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

KNS für PL-1

Einführungsregeln	Beseitungsregeln
∀E	∀B
	(Universelle Instantiierung)
	∀x A
	A a/x
3E	3B

∀x A A a/x

• uniforme Substitution A a/x:

- Ersetzung aller Vorkommen von x in A durch a

Alle Linguisten sind klug.

Peter ist ein Linguist.

Also: Peter ist klug.

$$\begin{array}{c|cccc} (1) & \forall x \; (L(x) \rightarrow K(x)) & \text{Pr\"{a}misse} \\ (2) & L(p) & \text{Pr\"{a}misse} \\ (3) & L(p) \rightarrow K(p) & \forall B, \; (1) \; p/x \\ (4) & K(p) & \rightarrow B, \; (2), \; (3) \\ \end{array}$$

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

KNS für PL-1

Einführungsregeln	Beseitungsregeln
AE	∀B
	(Universelle Instantiierung)
	∀x A
	A a/x
3E	ЭВ
(Existentielle Generalisierung)	
A	
∃x A x//a	

KNS PL-1: ∃E

A ∃x A x//a

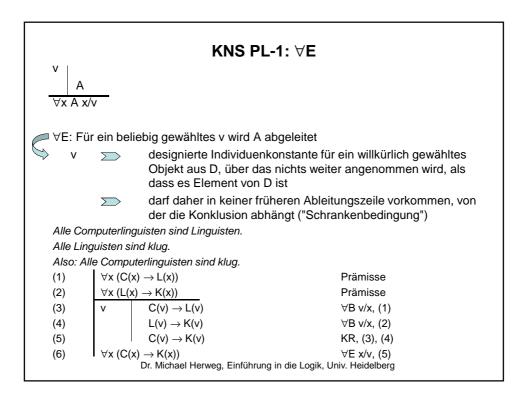
- partielle Substitution A x//a:
 - Ersetzung beliebig vieler Vorkommen von a in A durch x

Alle Linguisten sind klug.

Peter ist ein Linguist.

Jemand ist klug.

(1)	$\forall x (L(x) \to K(x))$	Prämisse
(2)	I (p)	Prämisse
(3)	$L(p) \rightarrow K(p)$	∀B, (1)
(4)	K(p)	→B, (3)
(5)	$L(p) \to K(p)$ $K(p)$ $\exists x K(x)$	∃E x//p, (4)


Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

KNS für PL-1

Einführungsregeln	Beseitungsregeln
∀E	∀B
(Universelle Generalisierung)	(Universelle Instantiierung)
V	∀x A A a/x
∃E (Existentielle Generalisierung)	ЭВ
A	
∃x A x//a	

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

1

KNS für PL-1

Einführungsregeln	Beseitungsregeln	
∀E (Universelle Generalisierung)	∀B (Universelle Instantiierung)	
V A ∀x A x/v	∀x A A a/x	
3E (Existentielle Generalisierung)	∃В (Existentielle Instantiierung)	
A ∃x A x//a	∃x A w	

KNS PL-1: ∃B

∃B: Aus einer Existenzaussage wird für ein willkürlich gewähltes w eine Aussage B abgeleitet.

w ≥ designierte Individuenkonstante für ein willkürlich ausgewähltes Objekt aus D, das die Prädikate in A erfüllt (NB: wenn ∃x A wahr sein soll, muss es auch mindestens ein Objekt geben, auf das die Prädikate in A zutreffen)

addr - außer in der typischen Instantiierung (A w/x) - in keiner Ableitungszeile vorkommen, von der die Konklusion abhängt ("Schrankenbedingung")

darf in dem in der Unterableitung erschlossenen B nicht mehr vorkommen.

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

KNS PL-1: ∃B

Beispiel 1: |- $\exists x (F(x) \land G(x)) \rightarrow$ $\exists x F(x) \land \exists x G(x)$

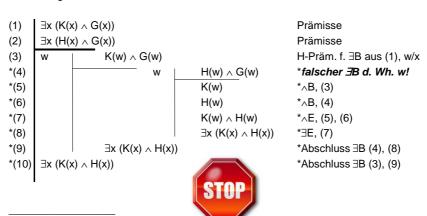
KNS PL-1: ∃B

Beispiel 2:

Einige Pilze sind giftig. (= Einige Pilze sind giftige Dinge.)

Alles Giftige ist schädlich. (= Alle giftigen Dinge sind schädlich.)

Also: Einige Pilze sind schädlich.

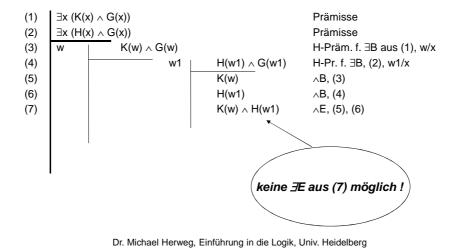

(1)	∃x (P(x)	∧ G(x))	Prämisse
(2)	∀x (G(x)	\rightarrow S(x))	Prämisse
(3)	W	P(w) ∧ G(w)	H-Präm. f. ∃B aus (1), w/x
(4)		$\overline{G(w)} o S(w)$	∀B w/x, (2)
(5)		G(w)	∧B, (3)
(6)		S(w)	→B, (5), (4)
(7)		P(w)	∧B, (3)
(8)		$P(w) \wedge S(w)$	∧E, (7), (6)
(9)		$\exists x \ (P(x) \land S(x))$	∃E x//w, (8)
(10)	∃x (P(x)	∧ S(x))	Abschluss ∃B, (3), (9)

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Vorsicht bei der Anwendung von ∀E und ∃B: Verletzung der Schrankenbedingung für ∃B führt zu unkorrekten Schlüssen!

Einige Katzen sind gefährlich. Einige Hunde sind gefährlich.

*Also: Einige Katzen sind Hunde.


* - unzulässiger Schritt

Vorsicht bei der Anwendung von ∀E und ∃B: Verletzung der Schrankenbedingung für ∃B führt zu unkorrekten Schlüssen!

Einige Katzen sind gefährlich.

Einige Hunde sind gefährlich.

*Also: Einige Katzen sind Hunde.

Vorsicht bei der Anwendung von ∀E und ∃B: Verletzung der Schrankenbedingung für ∃B führt zu unkorrekten Schlüssen!

- Die designierten Variablen v, v1, v2, ... und w, w1, w2, ... müssen strikt getrennt verwendet werden:
 - v, v1, v2, ... nur für ∀E
 - w, w1, w2, ... nur für ∃B
- v : designierte Individuenkonstante für willkürlich gewählte Objekte aus D (ohne jegliche Einschränkung)
- w : designierte Individuenkonstante für willkürlich ausgewähltes Objekt aus D, von dem angenommen wird, dass es die Prädikate in A erfüllt
- F(w) kann nicht als Basis für die Anwendung von $\forall E$ [d.h. für die Ableitung von $\forall x$ F(x)] dienen, weil w nicht für ein völlig willkürlich ausgewähltes Objekt aus D steht, sondern nur für solche Objekte, auf die F zutrifft, falls $\exists x$ F(x) wahr ist.

KNS für PL-1: die Schlussregeln in der Übersicht

Einführungsregeln	Beseitungsregeln
∀E	∀B
(Universelle Generalisierung)	(Universelle Instantiierung)
V A ∀x A x/∨	∀x A ————————————————————————————————————
3E	∃В
(Existentielle Generalisierung)	(Existentielle Instantiierung)
A	∃x A
∃x A x//a	W A W/X B B

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Literatur zum Kalkül des natürlichen Schließens

- Partee, Barbara H.; ter Meulen, Alice; Wall, Robert E. (1990): Mathematical Models in Linguistics. Dordrecht: Kluwer.
 - darin: §6.5 Statement Logic / Natural Deduction und §7.4 Predicate Logic / Natural Deduction
- Gamut, L.T.F. (1991): Logic, Language, and Meaning. Vol. 1: Introduction to Logic. Chicago: Chicago University Press.
 - darin: §.4.3 Arguments and Inferences / Natural Deduction: A Syntactic Approach to Inference